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I. INTRODUCTION

THE guidance employed during the early powered flight of a space vehicle
is referred to as injection, boost or ascent guidance. The techniques are
almost the same as those used in the guidance of ballistic missiles and
they are not described in this paper. Instead, the correction of space
trajectories by small impulse-type maneuvers is discussed, since injection
guidance alone would not usually be sufficiently accurate for advanced
space missions.

Such so-called midcourse maneuvers are applied by means of a small
rocket motor mounted in the spacecraft. The magnitude and direction
of the correcting impulse is computed on the ground from radio measure-
ments and, prior to the maneuver, the appropriate commands are sent
by radio to the probe.* In addition to presenting the theoretical founda-
tions, this paper gives representative figures for the errors both in deter-
mining the orbit and in applying the correction. Reference is also made
to tracking sites and the mechanization in the spacecraft.

2. THEORY OF MIDCOURSE MANEUVERS

At this point it is convenient to assume that the actual trajectory fol-
lowed by a vehicle differs only slightly from some precalculated standard
trajectory. Linear perturbation theory may then be applied to all calcu-
lations dealing with coordinate variations and small velocity increments
(for correcting the trajectory). Although for most purposes the approxi-
mations of linear perturbations are good, the theory is invoked more
as a convenience than as a necessary step in the calculations. The theory
is used to carry out first-order analyses but, where necessary, iterative
procedures would refine the approximations.

* The terms space vehicle, spacecraft and space probe are used synonymously.
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If a probe reaches the desired destination point at a 2iven time t, on
the ideal or standard trajectory, then, because of injection errors, the
probe will not, in general, reach the same point at time t2 on an actual
trajectory unless some correction is applied. Let the differences in the
coordinates of position on the standard and the actual trajectory (in the
absence of a correction) be (Sx,  y,  (5z) at time t2. It is shown in Appendix
A that, in order to correct the trajectory by applying a velocity-impulse
with components (vx, vy, vz) at some previous time 11,

().y vx
(5y1 vy (1)r(5f _v,1t1

here H is a (3 x 3) matrix, the elements of which can be determined
from computations on the standard trajectory for any given t, and t.

Components (6 x, ( 5 y, (57) at time t., can be computed indirectly from
measured data and so the three velocity components necessary for the
correction of the trajectory are determined by Eq. (1). This would, how-
ever, guide the space probe to intercept a given moving point in space
at a given time. The latter restriction would usually be unnecessary, small
variations in the flight time would be permissible in most cases.
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FIG. I. Definition of miss-components M, and M2.

In order to allow variations of flight time, a new set of rectangular
axes is taken (Fig. 1) centered at the probe position at time t, on the
standard trajectory. The new axes are defined by the unit base vectors
ei , e2, and e3, where e, is along the probe velocity vector at time t2 on
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the standard trajectory. Since é2 is in the xy-plane and perpendicular
-

to ie3 and ei, it completes the set of mutually perpendicular base vectors.

If then (5R is the vector displacement corresponding to ((5x, 6y, (5z)  at
time t2, three new miss-components may be defined

-
M, = ei • 6R,  M.,  = e2 • 6R, M3 = e3 • 6R (2)

Assuming that, as a first-order approximation,* perturbed trajectories
have the same velocity direction at time t2, then  M,  and M2 are the miss-
components at some time different to  t2,  and M3 is associated only with
time of fli2ht variations. Thus

[
M.,
M11_[I,  in, n9 1

1 mi.n1

where (/,, rn1, n1) and (b„ rn, , n,) are the direction cosines of é, and -e2,
respectively. Indicating the (2 x 3) matrix of Eq. (3) by N, Eq. (1) can
be modified to

[Mm.21i=  —NH

If the velocity components satisfy the above two equations, the trajec-
tory would be corrected to pass through the desired end-point at some
unspecified time. However, the three components have to satisfy only
two equations, therefore there is one degree of redundancy, which may
be used for one of the following:

to minimize the magnitude of the correction
to apply a geometrical constraint to the maneuver for the sake
of practical convenience.
to control an additional destination variable such as speed or time
of arrival.

In the first case let

NH ---= [Kii] (5)

It can be shown that the magnitude of (vx, vy, vz) is a minimum when

• Kll  K12 K13

K21  KV,  K23 - 0 (6)
vic

* This approximation may be improved by taking out the effect of the attraction
of the destination planet. Such a procedure is convenient for first-order error analyses.
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Equation (6) defines a plane in which the correcting velocity vector
would always be, when applied at a given time, 11.  The plane is independent
of injection errors. The plane may be referred to as the most efficient
or critical plane, the normal to that plane being the noncritical direction.
The latter depends on the trajectory and the maneuver-time along the
trajectory. The non-critical direction is not always approximately parallel
to the probe velocity vector.

In practice it may not be convenient to apply the correction in the
critical plane. Referring to option (b) above, the correction might be
restricted to a plane perpendicular to the probe-sun axis. With a rocket
mounted at rightangles to that axis, one face of the spacecraft (carrying
solar panels) need not then be turned away from the sun during the mid-
course maneuver.

When the rocket thrust vector is restricted to a plane, critical or other-
wise, the velocity components would satisfy an equation of the form

av,r+bry÷cvz= 0 (7)

in addition to Eq. (4). To calculate the velocity components, a (3 x 3)
matrix is formed from the (2 x 3) matrix  NH  and  a, b. c  of Eq. (7),

p NH I
a b c (8)

P  being a (3 x 3) matrix. Then

—P

and

Vy

1'Z

l'y (9)

vz

MI I
(10)

0

13-1

which represents three equations specifying the velocity components
(subject to a constraint) in terms of the miss-components M1 and M2.

The latter would be obtained from the computed orbit according to the
measured data.

Actually, in computing the necessary maneuver during a flight, higher
order terms would be taken into account. Equation (10) would be em-
ployed for each iteration in conjunction with exact integration of the
equations of motion in a ground computer.

As regards the amount of maneuvering capability that a spacecraft
must carry, this hinges on the accuracy of the injection guidance system,
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i.e. how accurately the coordinates are controlled at burn-out of the last

stage. The calculation of the magnitude of the maneuver in terms of the

statistical moment-matrix of injection errors is given in Appendix B.

3. ORBIT DETERMINATION FROM RADIO MEASUREMENTS

In order to compute the required midcourse maneuver the trajectory
or orbit of the space probe must be determined from Earth-based meas-
urements. Such measurements would be from radar tracking and possibly
photographic detection. Although the latter can be very accurate the
processing time is inconviently long, apart from the uncertainties due
to weather. Radar tracking is therefore employed to provide the basic
data for orbit determination.

Early spacecraft (e.g. the U.S. Pioneer IV lunar probe) have carried
only a radio beacon for tracking purposes, i.e. a one-way link. In such
cases only angular measurements are possible. Any doppler measurements
are dependent on the stability of the probe transmitter frequency and
the velocity data becomes virtually useless. Later probes will carry a
phase-coherent receiver and transmitter so that the probe transmitter
frequency differs from the ground transmitter frequency only by the
doppler shift.* Accurate range-rate measurement is then possible. Range
data can be obtained by a simple modulation of the carrier signal, but
unfortunately such simple schemes require wide bandwidth and conse-
quently high power levels. More advanced modulation techniques are
being developed for spacecraft in which long intervals of the carrier
signal are modulated in a random fashion; for a given range accuracy
the required bandwidth is then much less.

Tracking of space vehicles will be carried out at several sites in differ-
ent countries but, in the U.S. space program, heavy reliance will be
placed on three sites w hich are being set up especially for the tracking
of lunar and interplanetary probes. These are located at Goldstone in
the Southern California desert, at Woomera (Australia) and possibly
in the southern area of Africa. Each site will eventually have one 85-ft

diameter antenna for receiN ing and one for transmitting. Each site will
therefore be able to send commands to the whicle, apart from measuring
the angular position, range-rate and ultimately the range of the space
probe. In addition there will be communication links with the main
computing center in the United States, in order that the data can be
processed and used for the in-flight orbit determination.

The central computer receives therefore many different kinds of meas-
urements from different tracking sites. These measurements are conta-

* The U.S. Pioneer V space probe has such a systcm.
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minated by different kinds of noise. For example angular measurements
are corrupted by refraction variations, antenna servo-jitter, slow mecha-
nical deformations of the antenna, etc. Consequently the multitude of
data points must be treated statistically (with the appropriate weighting)
to determine the orbit which best fits the noisy data. The theoretical pro-
cedure is outlined in Appendix C. Apart from describing the method
a result is also deduced for estimating the uncertainty in the orbit deter-
mination in terms of the expected noise on the measured data. The noise-
moment matrix of the uncertainties in the estimates of the six injection
coordinates is (Eq. C-12)

(5V46V,T:

where the general term  ju  of the (6 x 6)  J  matrix is

v v 1  OR OR
0.2 av dV.-T o2 ay. dV.R °

(12)

for observations of range  R,  ranae-rate  fi,  hour angle 0 and declination
(t• from radar sites.  M  data points are taken from the q'th site 17,(i --
1, 2, ..., 6) are the six injection coordinates and a2 denotes the variance
of noise  on  a particular kind of data (modified in the case of significant
self-correlation).

Equations 11 and 12 are extremely useful for (a) predicting the pre-
cision of orbit determination for given radar sites, (b) specifying the
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required accuracy of radar tracking to determine orbits to a given ac-
curacy and (c) evaluating the relative usefulness of different kinds of
tracking. The results of some representative calculations are shown
graphically in Fig. 2 which refers to a 76-hour lunar trajectory injected
ov er the South Atlantic Ocean.

A transformation has been applied to the moment matrix (Eq. 11)
to express the results in terms of miss-components at the moon. Thus,
if W is the (2 x 6) matrix relating injection errors to miss components,
the dispersion of the miss components  M,  and  M,  is given as

M2M1

Mi M2]

Contours of constant probability in the  (M,  M2)-plane are ellipses (as-




suming Gaussian noise on the measured data) and in Fig. 2 is plotted

the semi-major axis of the ellipse which contains 40 per cent of all cases
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FIG. 3. Accuracy of orbit determination  B.

(loosely referred to as the major miss-component). If a perfect midcourse
maneuver were applied at any time  T  after injection, Fig. 2 shows the
miss that would result at the moon due to the uncertainties in the orbit
determination.

Doppler measurements accurate to 1 rn/sec were assumed and such
data is known to have an influence on the determination more powerful
than the aneular data. Figure 3 is presented to demonstrate the value
of ranee data from the tracking site at Goldstone, California.
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One important conclusion from such studies is that the early tracking
data has the strongest effect on the precision of the orbit calculation;
if no radar tracking is available until about 5 hours after injection then
there is great difficulty in the numerical procedures and the orbit is known
only approximately.

4. MECHANIZATION AND SYSTEM PERFORMANCE

It was shown in section 2 that a system of midcourse guidance includes
a small rocket with a variable total impulse and the ability to point the
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thrust vector of the rocket in a desired direction.* Assuming that the rocket
is mounted rigidly in the spacecraft, the angular orientation of the latter
must be controlled and changed on command from the ground. Attitude
control for lunar missions will be with a system of gas jets, but for longer
interplanetary missions the addition of flywheel control will be desirable.
Provided the electrical power comes from solar panels the weight of
a flywheel system does not increase with journey-time.

TABLE 1

Representative figures for the accuracy of midcourse guidance

(R.M.S: quotations of errors)

Destination

IOrbitRocket motor shut-off'Rocket pointing (100ft 'sec maneuver )

determin-
ationCoefficient :AssumedCoefficientAssumed

miss,miles per , error,Miss.miles pererror,Miss,
mmilesilesft sec.ft/sec.degreedegreesmiles

Total
Miss,
miles

Moon 40 22 38 0.5 19 49

Mars 4000t 3600 1 3600 6200 0.5 3100 6200

Venus 3000t 2500 2500 4400 0.5 2200 4500

t) It is assumed that the uncertainty in the Astronomical Unit will be reduced
in the near future by more than one order of magnitude (Ref.")). Otherwise the
miss at Mars and Venus would be the order of 15,000 miles (fot 1 in 2000).

The ease of shutting off and restarting liquid propellant rocket motors
makes them attractive for midcourse maneuvers. Thrust levels can be
quite low (e.g. 50 lb) and the lower specific impulses of monopropellants
are acceptable in simplifying the propulsion unit. A separate tightcr form
of altitude stabilization would however be required during burninc., of
the rocket. Shut-off of the motor would be dependent upon the integrated
output of an accelerometer, mounted with the sensitive axis parallel to
that of the thrust vector.

The choice of  T,  the time of application of the maneuver is influenced
by (a) the magnitude of the correction as a function of  T, (b) the accuracy
of the orbit determination as a function of  T  and (c) visibility from tracking
sites which can send the radio-commands. The calculation of the maeni-

tude of the maneuver is given in Appendix B but the result, as a function
of  T,  is dependent on the relative values and cross correlations of the
injection errors. This is illustrated in Fig. 4 where the midcourse maneuver

* This is not, of course, the only possible mechanization. Another method is to
make two maneuvers in an invariant direction, although the first maneuver must be
made very early to avoid using excessive amounts of rocket propellant. The orbit is not
usually determined sufficiently only 2 hours after injection.
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to correct one-at-a-time injection errors is plotted against T. It will be

observed that they are not all monotonically increasing functions of T.

Taking into account considerations (a), (b) and (c) above, maneuvers
in practice would typically be applied 10 to 20 hours after injection on
lunar missions and in the first few days of interplanetary journeys.

The accuracy of midcourse guidance depends on (1) the orbit deter-
mination, (2) shut-off of the rocket and (3) pointing of the rocket thrust
vector. Typical figures for these are summarized in Table 1.

5. CONCLUSIONS

Radio-command midcourse guidance is regarded as having great po-
tential for future lunar and interplanetary missions. It is suitable for en-
suring impact on a small preselected area of the surface of the Moon,
for guidance prior to the creation of a lunar satellite and for sending a re-
coverable space probe round the Moon and back to Earth.

Furthermore, provided the measure of the Astronomical Unit is im-
proved, such guidance will ensure approaches of 10,000 to 20,000 miles
of the planets Mars and Venus.
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APPENDIX A

CORRECTING VELOCITY COMPONENTS

The coordinates (x,„, )72, zo)  on a ballistic trajectory at any time to are
functions of the coordinates (1. .'19 -1, :vi, :3'15 171)at any previous time  t,.
Hence, by taking only the first order terms of a generalized Taylor ex-
pansion,

axo (V, axo ax axo . axo .
bx, 6xi+ 	 (5371-1--   by ---az  (A-1)

ax, ax, ax, r ax,
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and similarly for  .6y2and  6z2,  where the perturbations are to be interpreted
as coordinate variations from a standard trajectory. If, in addition to
the six coordinate perturbations at time t1, a further perturbation is added,
an impulse of velocity with components (vx, vy,  x2)  such that

ôx., ax.,
6x2 .  V . -  V

	

x ay Y
(A-2), 


and similarly for by, and  6z2.  Then the net result will be that ti =
az, =  0, since the applied velocity perturbation will exactly cancel the
effects of the six coordinate variations at time  t,.  Equation (1) is a state-
ment of this result in matrix notation.

APPENDIX B


MAGNITUDE OF THE MANEUVER

Let  6X  be a (6 x 1) matrix of the six injection errors, then the resulting
miss components are given by the matrix equation

	

[MM121---= 14/6X  (B-1)

w here the (2 x 6) matrix W is a function of the choice of trajectory. The
same miss components can also be achieved by applying a midcourse
maneuver with velocity components  u,  and  u,  in a given plane. Thus

[ Al= Kr]
M, U2

(B-2)

where the (2 > 2) K matrix is obtainable from the P matrix of equation
(10). If  u,  and u2 are to correct the injection deviations 6X,

= W6X
U.2

(B-3)
[ Ui

and by multiplying each side of equation B-3 by its transpose

u, 1121
2 = K-1 TY6X6X-TWT0K-1T (B-4)

U2

Let the six injection errors  6X  be now considered as random variables;
the ensemble of B-4 is

= K-1W(OX(5XT)WTK-1T (B-5)
2u2u1 U 2
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But (oX OXT) = .1 is in fact the moment matrix of injection errors;


it gives the variances and covariances of those errors and would be cal-
culated from the form of the injection guidance system. Therefore

== wrK-IT

and the mean squared value of the midcourse maneuver is

112 = 1,22 4+14

i.e. the sum of the two diagonal terms of the matrix on the riat side

of equation B-7. In order to cope with 99 per cent of all cases the space-

craft should have a maneuver capability between 2.1u and 2.5u depending

on the dispersion ellipse of u, and u2.

APPENDIX C

OUTLINE 01- THE METHOD OF COMPUTING THE ORBIT

It is assumed that the actual trajectory is very close to a pre-computed

reference trajectory, and consequently, that linear perturbation theory is

applicable for deducing first approximations. Let (5ipbe an (M x 1) matrix

denoting all M measured coordinate perturbations; M is a large number

since it includes many measurements of angles and range-rate (and pos-

sibly range) from several tracking sites. The trajectory can be completely

specified by perturbations in the six injection coordinates

_ —
(5V -= 01/1

(5V„
(5V,
61/4
(5V,
6V,

Furthermore, from linear perturbation theory,

ip  =  U  (C-2)

where U is an (Al x 6) matrix computed on the reference trajectory.

Now (51prepresents the coordinates that would be measured but for noise,

actually the coordinates 64--are observed where

ul
2

112



(C-I)

(C-3)
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—
N,
N.

(C-4)

M

repres ents the noise components on all kinds of measurements at all times

from all sites.

It is assumed that these noise components are associated with a multi-

variate Gaussian distribution, with the probability density function

P(N)= exp (_ NTK—I.Ar) (C-4)
(27 ) "4!K1

where K is the noise moment matrix of all M measurement-errors. By
substitutin e equation C-3 in C-4

1
P(N)= 	 exp '04---6  01 (C-5)

(2..--r)m1Kj

Computation of 6V by the method of maximum likelihood (ref.(1) con-




sists of maximizing P(N) or, what amounts to the same thing, minimizing

(6.;— y,)TIC-1(<54--- (5?p) (C-6)

The solution for the (6 x 1) matrix  V,  which minimizes expression

C-6, can be shown to be

bV = J-1UTK-1 64: (C-7)

where

J = UTK-1U (C-8)

However K is an (Mx M) matrix, where M may be as hieh as 1000; it would
be impracticable to invert numerically such a hieh order matrix. Fortu-

nately, it would usually be possible to assume that all the measurement

errors are uncorrelated, in which case K becomes simply a diagonal matrix
of the variances of the noise on the different kinds of measurements at

different times. (In practice, if certain errors are self-correlated, it is suf-
ficient to modify the variances in the diagonal K matrix according to the
correlation interval.) The method of maximum likelihood then becomes

the method of weighted least-squares and only the (6 x 6) J matrix has

to be inverted. For very accurate determination of orbits it would not

usually be sufficient to rely on linear perturbation theory. Instead an
iterativ e procedure would be employed where each iteration is calculated

as above.

where
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An important corrolary to equation C-7 is deduced as follows: equation

C-3 is substituted in C-7

61.7 _ j-lur j-lur (C-9)

i.e. OV has been expressed as the sum of the true solution plus the un-

certainty due to noise components. Let the latter by (5 Vu, then

V— J-11.1TK-lN (C-10)
and

= j-itirK-iNNTK-17-w-vr (C-11)

Taking the ensemble average, noting that K= NNT and using equation
C-8,

61/„(5V,I; = (C-12)

which is the noise-moment matrix of the uncertainties in determining

the six initial coordinates.




